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Abstract

In this paper, we propose OrthoGAN, conditional GANs based model to aid
orthodontic patients and orthodontists to visualize synthetic post-treatment teeth
images. Our proposed model learns a mapping between pre and post treatment
clinical images. We employed generative models to facilitate orthodontists and
orthodontic patients. In the orthodontics treatment, orthodontist takes X-rays,
impression and images to diagnose and finalize treatment plan. Orthodontist and
orthodontic patient uses these clinical images to identify and evaluate pre and post
treatment effects on teeth. To our knowledge, this is the first work in the field
of orthodontics. Experiments results demonstrate that our proposed OrthoGAN
perform better as compared to the state-of-the-art models.

1 Introduction

With the development of Generative Adversarial Networks (GANs), computer vision has advanced
significantly in medical applications. Recently, GANs have been used to develop many medical
imaging applications [1, 2, 3, 4, 5].

Orthodontics is the field of dentistry that deal with overbites, cross bites, under bites, spacing between
teeth, overcrowding of teeth and temporomandibular disorders (TMD) and to align misaligned teeth.
Orthodontists most commonly use braces to fix these issues. We have employed GANs structure
to facilitate orthodontists and orthodontic patients. Before treatment, the orthodontist maintains a
complete set of clinical images that consist of intra-oral and extra-oral images. Orthodontist maintains
these clinical images to diagnose, determine the best possible treatment and compare pre-treatment
and post-treatment results [6, 7, 8, 9]. Extra-oral images contain information about a patient’s facial
features and smile aesthetics. It consist of these four images: frontal face with lips relaxed, frontal
face with smile, right side profile and 45◦ profile. Intra-oral images provide in-depth view of teeth
images from different angles to aid the orthodontist. It consist of these five images: Frontal in
occlusion, left buccal in occlusion, right buccal in occlusion, upper occlusal using mirrors, and lower
occlusal using mirrors.

We propose OrthoGAN, conditional generative adversarial network that takes pre-treatment teeth
image as input and generates post-treatment teeth image. To the best of our knowledge, we are the
first ones to apply GANs in the field of orthodontics. Some patients suffer from fear of orthodontic
treatment [10]. These patients avoid or some times delay their appointments which leads to poor oral
health. Orthodontists can use the proposed OrthoGAN to help such patients by showing them the
synthetic post-treatment results as demonstrated in Figure 1.

We formulate OrthoGAN using conditional generative adversarial network. We verify correctness
of our proposed method OrthoGAN, by using qualitative and quantitative evaluation. OrthoGAN
generates photo-realistic synthetic post-treatment teeth image.
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Figure 1: Pre-treatment image, Synthetic post-treatment image and real post-treatment image

2 Related Work

Generative Models: With the advent of Generative Adversarial Networks (GANs) [11] and deep
convolutional GANs (DCGANs) [12], generative modeling have gained popularity in photo realistic
image generation tasks. GANs consist of two adversaries: a generator (G) and a discriminator (D).
The generatorG tries to capture the data distribution while a discriminatorD estimates the probability
of a sample being real or fake using training data. Mathematically it can be written as:

min
G

max
D

LGAN (D,G) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log((1−D(G(z)))]
(1)

Originally, GANs were designed to generate images from random noise [11, 12]. However, GANs
variants guided by input image [13, 14, 15, 16, 17] or text have also become popular [18] and these
are called conditional GANs (cGANs).

GANs extension to generate images on some condition called conditional Generative Adversarial
Networks (cGANs). Conditional GANs receive conditioning information y on both G and D. The
learning formulation now becomes:

min
G

max
D

LcGAN (D,G) = Ex,y∼pdata(x,y)[logD(x, y)]+

Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, z)))]
(2)

Image-to-Image translation: From many years, different image-to-image translation systems have
been proposed in computer vision, image processing and graphics research [13, 19, 20, 21]. Recently,
with the advent of GANs, photo-realistic results have been achieved in the image-to-image translation
tasks [13, 16, 17, 14].

Isola et al. [13] pix2pix framework uses conditional adversarial network to learn mapping from
source to target domain using paired data. They used `1 loss with adversarial loss in generator to
generate images that are close to ground truth images as possible.

Sangkloy et al. [22] used similar idea to generate images from sketches. GANs have been used
to reconstruct face images conditioned on different attributes (e.g. to add glasses, to change hair
color, to smile or even change the gender of person) [23, 15, 24, 25, 16, 17]. Conditional GANs
have been used for image manipulation guided by user [26] and style transfer [27]. GANs have been
used by medical researchers also to develop medical imaging applications [1, 2, 5, 28]. Dai et al. [1]
proposed structure correcting adversarial network (SCAN) to segment the lung fields and the heart
from Chest X-ray images. Nie et al. [2] trained a patch-based GANs to translate brain MRI image to
Computed Tomography (CT) image. Costa et al. [5] proposed a framework to learn the retinal vessel
segmentation and then they learned mapping from binary vessel tree to new retinal image. In [29]
synthetic focal liver lesions images are generated from CT and then they used CNN to classify liver
lesion images. Xue et al. [30] proposed SegAN with a multiscale `1 loss function. Yang et al. [31]
used GANs to introduce new CT image denoising method. They have used Wasserstein distance to
improve performance of GANs and perceptual loss to suppress the noise. Hwang et al. [28] applied
GANs in dental restorations by learning the mapping between input dental image and target image
after placement of technician designed crown.

To the best of our knowledge this is the first model which attempt to aid orthodontic patients to
visualize how their teeth will look after treatment
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3 Method

Conditional generative adversarial network objective function can be defined as:

min
G

max
D

LcGAN (D,G) = Ex,y∼pdata(x,y)[logD(x, y)]+

Ex∼pdata(x)[log(1−D(x,G(x)))]
(3)

Where D tries to maximize this objective against adversary G that tries to minimize this objective.
We use `1 loss in generator with adversarial loss to make generator training more supervised.

L`1(G) = Ex∼pdata(x)[||y −G(x)||1] (4)

Conditional generative adversarial network alone produces noise and artifacts on images that make
generated images unrealistic. To avoid these issues and improve the quality of the generated images,
we used feature reconstruction loss [32]. Let y and ŷ be target and output images, we extract
features from y and ŷ images by passing them through feature reconstruction network φ (VGG16
[33] pretrained [34] model). Let φl(y) and φl(ŷ) denote features of target and output images extracted
from layer l of the φ network, where l = {convk_k}3k=1.

LFR(G) = ||φl(y)− φl(ŷ)|| (5)

Our final objective is as follows:

G∗ = argmin
G

max
D

LcGAN (D,G) + λL`1(G) + LFR(G) (6)

4 Experiments

To show effectiveness of our proposed orthoGAN model, we make comparison with pix2pix [13].
The performance of models are evaluated quantitatively and qualitatively.

Dataset: We need dataset with set of image pairs, where each image pair contains pre treatment and
post treatment teeth image. Since there no such dataset is available, We crawled intra-oral frontal
occlusion pre and post treatment images from Google Images. In total, we collected 401 pre and post
treatment teeth image pairs. We cropped and resized the mouth region to 64× 128 and then aligned
them manually. Some examples are shown in Figure 2. We randomly select 90 percent of data for
training and 10 percent for testing.

Figure 2: Pre and post treatment images from our collected dataset

Network Architecture: OrthoGAN consists of generator and discriminator and a loss network.
We have used the UNet [35] encoder decoder architecture in our generator. UNet introduced
skip connections between encoding and decoding layers to allow sharing of low-level information
like edges of objects. UNet with conditional GANs produces more realistic images as compared
to previous approaches that produce blurry images. However, images produced by conditional
generative adversarial networks still contain some noise and artifacts due to instability of their
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training. Generator architecture consist of: Encoder (Conv64-Conv128-Conv256-Conv512) and
Decoder (Deconv512-Deconv256-Deconv128-Deconv64). The feature maps at the end of decoder
are mapped onto three color channels by applying convolution after last layer in decoder. BatchNorm
is applied after each convolutional layer except first convolutional layer. The encoder uses Leaky
ReLUs with slope 0.2, while the decoder uses ReLUs. For discriminator architecture, we have
used the discriminator from PatchGAN [27] to classify each N × N patch of image and average
all outputs to get final output. Since `1 loss encourages modelling of low level details, high level
details are captures by giving attention to local patches. This is why we used PatchGAN discriminator
architecture. Discriminator architecture consist of Encoder (Conv64-Conv128-Conv256-Conv512).
To map one dimensional output we apply convolution after the last layer followed by sigmoid function.
BatchNorm is applied after each convolutional layer except first convolutional layer. All ReLUs are
leaky in discriminator with slope 0.2.

Training Procedure: We follow the training procedure of pix2pix [13], alternating between one
gradient descent step on G and one step on D. We use Adam [36] with β1 = 0.5 , β2 and learning
rate 0.0002. We use batch size 1 for all experiments. Each experiment is trained for 200 epochs.

Analysis of Results: To show effectiveness of our proposed OrthoGAN model, we conduct compari-
son with pix2pix [13] model. In Figure 3, we present qualitative comparison results. We observed
in Figure 3, when pix2pix produced more blurry results Our proposed method OrthoGAN results
are not so blurry. With our proposed OrthoGAN results are more realistic, post treatment images
preserve shapes of teeth and color details. To evaluate our results quantitatively, we used Structure
Similarity (SSIM) [37] and Mean Squared Error (MSE) to measure similarity and difference between
synthetic and original post-treatment images. As shown in Table 1, compared to pix2pix [13], the
MSE for OrthoGAN is lower while SSIM [37] is higher.

Table 1: Quantitative evaluation results

pix2pix [13] OrthoGAN
MSE_test 918.89 851.97
SSIM_test 0.5542 0.5651

5 Conclusion and Future Work

We have employed adversarial learning to generate synthetic post treatment teeth images to facilitate
orthodontist and orthodontic patients. Experiment results demonstrate that our proposed OrthoGAN
generates realistic synthetic post treatment intra-oral images as compared to state-of-the-art image to
image translation model. In future, we will explore use of OrthoGAN with different datasets.
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Figure 3: Teeth image synthesis on test dataset. First column shows pre treatment teeth image,
second, third column shows pix2pix and OrthoGAN results, and right most column shows original
post treatment teeth image
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